2. Modell

Name

Early detection of sepsis utilizing deep learning on electronic health record event sequences

Alternative Bezeichnung

n.a.

Kurzbeschreibung

Deep learning system for early detection of sepsis on multi-center danish dataset present outside ICUs.

Endpunkt

sepsis-positive or sepsis-negative

Input

Electronic health record (patient administration system) Diagnoses (international classification disease – 10; ICD-10), procedures (NCSP – the NOMESCO Classification of Surgical Procedures), booking information, health content (structured notes containing physiological measurements, symptom classifications, check box data such as smoking and exercise habits) Electronic health record (medication module) Dates and times for prescriptions and dispensing together with information on ingredients, dose, administration routes. Laboratory system Microbiology and blood gas analysis Medical imaging system Image descriptions from computed tomography, magnetic resonance imaging, ultrasound, X-ray, positron-emission tomography National patient register Hospital admissions, diagnoses (ICD-10), procedures (NCSP) Civil registration system Patient demographics: age, address, and marital status

Modell

Sequential CNN-LSTM model (Long-term Recurrent Convolutional Network) (Vergleichsmodelle: Gradient Boosting-Vital, Non-Sequential Multilayer perceptron)

Datenbasis

Retrospective data from multiple Danish hospitals over a seven-year period (all citizens in 4 municipalities >18y) 52,229 data-points (“contacts”) in “full” data-set 3126 data-points (“vital-sign” data-set)

Performance Metrics

Best performance: CNN-LSTM; AUROC 0.856 (3 h before sepsis onset) to AUROC 0.756 (24 h before sepsis onset)

Features

See input; must include complete vital signs = >1 event: systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, peripheral capillary oxygen saturation, and temperature

Validierung

Split: 80 (Training) 10 (Validation) 10 (Test data), five-fold cross validation, oversampling

Verfügbarkeit

Kein markterhältliches Medizinprodukt

Erstveröffentlichung

April 2020

Status

Kein markterhältliches Medizinprodukt

Quellen

https://www.sciencedirect.com/science/article/pii/S0933365719303173

Nach oben scrollen
Datenschutz-Übersicht

Diese Website verwendet Cookies, damit wir dir die bestmögliche Benutzererfahrung bieten können. Cookie-Informationen werden in deinem Browser gespeichert und führen Funktionen aus, wie das Wiedererkennen von dir, wenn du auf unsere Website zurückkehrst, und hilft unserem Team zu verstehen, welche Abschnitte der Website für dich am interessantesten und nützlichsten sind.